Explore diverse LeetCode solutions in Python, C++, JavaScript, SQL, and TypeScript. Ideal for interview prep, learning, and code practice in multiple programming languages. Github Repo Link
Given an xn
board
of characters and a list of strings words
, return all words on the board.
Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
Example 1:
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k ","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"] Output: ["eat","oath"]
Example 2:
Input: board = [["a","b"],["c","d"]], words = ["abcb"] Output: []
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j]
is a lowercase English letter.1 <= words.length <= 3 * 10 4
1 <= words[i].length <= 10
words[i]
consists of lowercase English letters.- All the strings of
words
are unique.
Table of contents
TogglePython
# time complexity: O(M(4*3^(L-1))) # space complexity: O(n) from typing import List class Solution: def findWords(self, board: List[List[str]], words : List[str]) -> List[str]: WORDKEY = "$" trie = {} for word in words: node = trie for letter in word: node = node.setdefault(letter, {}) node[WORDKEY] = word rowNum = len(board) colNum = len(board[0]) matchedWords = [] def backtracking(row, col, parent): letter = board[row][col] currNode = parent[letter] wordMatch = currNode. pop(WORDKEY, False) if wordMatch: matchedWords.append(wordMatch) board[row][col] = "#" for rowOffset, colOffset in [(-1, 0), (0, 1), (1, 0) , (0, -1)]: newRow, newCol = row + rowOffset, col + colOffset if ( newRow < 0 or newRow >= rowNum or newCol < 0 or newCol >= colNum ): continue if not board[newRow][newCol ] in currNode: continue backtracking(newRow, newCol, currNode) board[row][col] = letter if not currNode: parent.pop(letter) for row in range(rowNum): for col in range(colNum): if board [row][col] in trie: backtracking(row, col, trie) return matchedWords # time complexity: O(n*3^l) # space complexity: O(m) class TrieNode: def __init__(self, char=" "): self.char = char self.children = {} self.isEnd = False class Trie: def __init__(self): self.root = TrieNode() def insert(self, word): node = self.root for c in word: if c not in node.children: node.children[c] = TrieNode() node = node.children.get(c) node.isEnd = True def startsWith(self, prefix): node = self.root for c in prefix: if c not in node.children: return False node = node.children[c] return True def removeChars(self, word): node = self.root childList = [] for c in word: childList.append( [node, c]) node = node.children[c] for parent, childChar in reversed(childList): target = parent.children[childChar] if target.children: return del parent.children[childChar] class Solution: def findWords (self, board: List[List[str]], words: List[str]) -> List[str]: def dfs(trieForWords: Trie, node: TrieNode, grid: List[List[str]], row: int, col: int, result: List[str], word=""): if node.isEnd: result.append(word) node.isEnd = False trieForWords.removeChars(word) if 0 <= row < ROW and 0 <= col < COL: char = grid[row][col] child = node.children.get(char) if child is not None: word += char grid[row][col] = None for dR, dC in [ (0, 1), (1, 0), (-1, 0), (0, -1)]: dfs(trieForWords, child, grid, row + dR, col + dC, result, word) grid[row ][col] = char ROW = len(board) COL = len(board[0]) trieForWords = Trie() result = [] for word in words: trieForWords.insert(word) for r in range(ROW): for c in range(COL): dfs(trieForWords, trieForWords.root, board, r, c, result) return result board = [["o", "a", "a", "n"], ["e" , "t", "a", "e"], ["i", "h", "k", "r"], ["i", "f", "l", "v"]] words = ["oath", "pea", "eat", "rain"] print(Solution().findWords(board, words))