Explore diverse LeetCode solutions in Python, C++, JavaScript, SQL, and TypeScript. Ideal for interview prep, learning, and code practice in multiple programming languages. Github Repo Link
A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (ie, was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] Output [null, null, true, false, true, null, true] Explanation Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // return True trie.search("app"); // return False trie.startsWith("app"); // return True trie.insert("app"); trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 10 4
calls in total will be made toinsert
,search
, andstartsWith
.
内容目录
TogglePython
# insert() # time complexity: O(l) # space complexity: O(l) # search() # time complexity: O(l) # space complexity: O(1) # search prefix() # time complexity: O(l) # space complexity: O(1) class TrieNode: def __init__(self, char: str = ""): self.char = char self.children = {} self.isEnd = False class Trie: def __init__(self): self.root = TrieNode() def insert(self, word: str): node = self.root for c in word: if c in node.children: node = node.children[c] else: newNode = TrieNode() node.children[c] = newNode node = newNode node.isEnd = True def search(self, word: str): node = self.root for c in word: if c not in node.children: return False node = node.children[c] return node.isEnd def startsWith(self, prefix: str): node = self.root for c in prefix: if c not in node.children: return False node = node.children[c] return True # Your Trie object will be instantiated and called as such: trie = Trie() trie.insert("apple") print(trie.search("apple")) print(trie.search("app")) print(trie.startsWith("app")) trie.insert("app") print(trie.search("app"))