Explore diverse LeetCode solutions in Python, C++, JavaScript, SQL, and TypeScript. Ideal for interview prep, learning, and code practice in multiple programming languages. Github Repo Link
You have a graph of n
nodes labeled from 0
to n - 1
. You are given an integer n and a list of edges
where edges[i] = [ai, bi]
indicates that there is an undirected edge between nodes ai
and bi
in the graph.
Return true
if the edges of the given graph make up a valid tree, and false
otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]] Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]] Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
- There are no self-loops or repeated edges.
Python
# time complexity: O(n)
# space complexity: O(n)
from typing import List
class UnionFind:
def __init__(self, n: int) -> None:
self.parents = list(range(n))
def find(self, node: int) -> int:
while node != self.parents[node]:
node = self.parents[node]
return node
def union(self, nodeX: int, nodeY: int) -> bool:
parentX, parentY = self.find(nodeX), self.find(nodeY)
if parentX == parentY:
return False
self.parents[parentX] = parentY
return True
class Solution:
def validTree(self, n: int, edges: List[List[int]]) -> bool:
if len(edges) != n - 1:
return False
disjointUnionSet = UnionFind(n)
for startVertex, endVertex in edges:
if not disjointUnionSet.union(startVertex, endVertex):
return False
return True
n = 5
edges = [[0, 1], [0, 2], [0, 3], [2, 3]]
print(Solution().validTree(n, edges))