[Leetcode] 0208. Implement Trie

Explore diverse LeetCode solutions in Python, C++, JavaScript, SQL, and TypeScript. Ideal for interview prep, learning, and code practice in multiple programming languages. Github Repo Link

trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.

Implement the Trie class:

  • Trie() Initializes the trie object.
  • void insert(String word) Inserts the string word into the trie.
  • boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
  • boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.

 

Example 1:

Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]

Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // return True
trie.search("app");     // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app");     // return True

 

Constraints:

  • 1 <= word.length, prefix.length <= 2000
  • word and prefix consist only of lowercase English letters.
  • At most 3 * 104 calls in total will be made to insertsearch, and startsWith.

內容目錄

Python

				
					# insert()
# time complexity: O(l)
# space complexity: O(l)
# search()
# time complexity: O(l)
# space complexity: O(1)
# search prefix()
# time complexity: O(l)
# space complexity: O(1)
class TrieNode:
    def __init__(self, char: str = ""):
        self.char = char
        self.children = {}
        self.isEnd = False


class Trie:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word: str):
        node = self.root
        for c in word:
            if c in node.children:
                node = node.children[c]
            else:
                newNode = TrieNode()
                node.children[c] = newNode
                node = newNode
        node.isEnd = True

    def search(self, word: str):
        node = self.root
        for c in word:
            if c not in node.children:
                return False    
            node = node.children[c]
        return node.isEnd
    
    def startsWith(self, prefix: str):
        node = self.root
        for c in prefix:
            if c not in node.children:
                return False
            node = node.children[c]
        return True


# Your Trie object will be instantiated and called as such:
trie = Trie()
trie.insert("apple")
print(trie.search("apple"))
print(trie.search("app"))
print(trie.startsWith("app"))
trie.insert("app")
print(trie.search("app"))
				
			
zh_TW繁體中文